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Abstract 

We discuss a class of solutions to the Ernst equation (the stationary axisymmetric Einstein 
equations) obtained as solutions of a generalized scalar Riemann-Hilbert problem on a hyperelliptic 
Riemann surface. The singular structure of these solutions is studied for arbitrary genus of the 
Riemann surface. A subclass is given for which the Ernst potential is everywhere regular besides at 
a contour that can be identified with the surface of a body of revolution. It turns out that the recently 
discussed rigidly rotating dust disk belongs to this class. 
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The metric describing the exterior (i.e. the vacuum region) of an isolated axisymmetric.  

stationary rotating body can be written in the Weyl-Lewis-Papapet rou  form (see I l l )  

ds 2 = - e2U(d t  + a dq~) 2 + e-2U(e2k(dp 2 + d/7 2) + p2 d~b2), (1) 

where p and ( are Weyl 's  canonical coordinates and Ot and a 4, are the two commuting 

asymptotically time-like and space-like Killing vectors, respectively. In this case, the vac- 

uum field equations are equivalent to the Ernst equation for the Ernst potential f where 

f = e 2U + i b  and the real function b is related to the metric functions via b= = - ( i /p)e4Ua:.  
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Here the complex variable z stands for z = p + i(. With these settings, the Ernst equation 

reads 

1 2 
f"2 + 2(z + g.~(fg + fz) = f + 7L,f~, (2) 

where a bar denotes complex conjugation in C. With a solution of the Ernst equation, the 

metric function U follows directly from the definition of the Ernst potential whereas a and 

k can be obtained from f via quadratures. 

The typical problem one has to treat in the context of the Ernst equation is to find the 

exterior solution for isolated matter distributions which is possible if an interior solution 

like the Wahlquist solution [2] is known, or if surface-like distributions are considered. 

This is equivalent to the solution of a boundary value problem where the Ernst potential 

has to be regular outside the contour that corresponds to the surface of the body. Recent 

work by Neugebauer and Meinel [3,4] suggests that such problems can be solved with the 

help of Riemann-Hilbert techniques. They succeeded in transforming the boundary value 

problem for the rigidly rotating dust disk (with radius P0 and dust parameter/*d) into a 

Riemann-Hilbert problem. Subsequently [5] they were able to reduce the resulting matrix 

problem to a scalar one on a hyperelliptic Riemann surface of genus 2. 

The question we address here is to which extent Riemann-Hilbert techniques on hy- 

perelliptic Riemann surfaces are useful in the construction of solutions to boundary value 

problems for the Ernst equation. 

The remarkable feature of Eq. (2) is that it belongs to a class of completely integrable 

nonlinear equations. These are studied as the integrability condition of an overdetermined 

linear differential system which contains an additional variable, the so-called spectral pa- 

rameter K. In the case under consideration, we use the linear system of [6] for a 2 x 2-matrix 

45. Here the spectral parameter lives on a family of Riemann spheres £ parametrized by z 

and g. and given by/Z 2 ---- (K - ff)(K + iz). 

The existence of the spectral parameter makes it possible to construct solutions to the 

Ernst equation by prescribing the singular structure of the matrix 45 with respect to K (poles, 

essential singularities and cuts). The structure of the singularities has to be in accordance 

with a set of axioms that ensure that 45 is a solution of the linear system for some Ernst 

potential f .  Furthermore, zeros of the determinant of 45 can be included in the formalism 

by introducing a two-sheeted covering £ of £, as was done in [7-9] for the construction 

of finite gap solutions to the Ernst equation where the matrix 45 has poles and essential 
singularities. 

The branch points El, F i of the covering are the zeros of the determinant if the components 

of 45 are regular there. They are subject to the reality condition El, Fi E ~ o r  Ei = Fi. 

The automorphism group (~ of £ turns out to be nontrivial. Therefore we may construct the 

hyperelliptic Riemann surface £H = £ / ~  given by # 2  __ ( K  - -  ff)(K + iz) vI/g_l (K - 
E i ) ( K  - Fi),  admitting an antiholomorphic involution, given by P ---- (K, hi(K)). 

Thus it is possible to construct solutions to the Ernst equation on £H by prescribing the 
poles, essential singularities and cuts of 45, in other words we pose a generalized matrix 

Riemann-Hilbert problem, see [ 1 0]. Since the latter cannot be solved in general, we restrict 
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Fig. 1. The homology basis for/~H. 
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ourselves to the case of a scalar Riemann-Hilbert  problem on £H that was solved by 

Zverovic [ 1 1 ] via quadratures. The key step of the solution is the construction on £H of an 

analog to the Cauchy kernel in the complex plane, e.g. [ (# ( r ) + tz ( K ) ) /2 t t  ( r ) ( r - K ) ] dr  

with P = (K, t t (K) )  c £H being fixed and representing the poles of  the kernel, and 

( r , /~ ( r ) )  6 £H. We introduce the standard quantities associated with a Riemann surface, 
namely with the cut system of Fig. 1, the g normalized differentials of  the first kind dwi 

defined by fa~ dwj : 2yri~ij and the Abel map ¢oi(P) : f ~  dwi with P0 = ( - i : , 0 )  
(sometimes simply denoted by - i z ) .  Furthermore, we define the Riemann matrix /7 with 

the elements :rij = fhi dtoj and the theta function O [ ~ ] ( z )  : Y~u~y_~exP{½(H(N + 

a) ,  (N + o r ) ) +  ((z +2rr i f l ) ,  (N +or))} with integer characteristic [~]  ~ ½2~g/Y_,e((N, =) : 

Y ~ g l  Nizi)" The normalized (all a-periods zero) Caucby analog with poles in P and P0 
will be denoted by dwpp  o. 

We have the following theorem. 

Theorem 1. Let F be a closed, piecewise smooth contour on £H such that with P c F 

also P c F, and G a finite nonzero function on F subject to G( P ) ---- G( P ). Let X ( P ) obey 

the jump condition Z + : G X -  on F with Z(~x~-) : 1. Let Y2(P) be an arbitrata: linear 

combination of  normalized Abelian integrals of  the second kind and o f  integrals of  the third 

kind with poles at the real branch points E i o f  order 1 and poles at real Fi o f  order - ~ .  

The b-periods o f  K2 are bi where K2( P) --- K2( P) and the singularities o f  the integrals q[" 

the second kind do not coincide with the Ei or Fi. Let Po E ~.H (P ~ O) be fixed and not 

coinciding with the singularities of  X or the branch points. Choose a characteristic [ ~ ]such 

that (0 [ ~ ] (co (P))  = 0 at the points P = Ei or P = Fi only. and has the same prol, erties 

under complex conjugation as the theta function with the characteristic [°o]. The,, 

x ( P ) =  xo (O[~](~o(P)) exp ~ (P )  + 2-~i lnG(r)d°JPP°(r) (3) 
F 
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is the solution to the scalar Riemann-Hilbert problem on •H with a jump at F, essential 

singularities at the poles of  the integrals of the second kind, and poles at the points Ei or 

Fi and the endpoints o f F .  Here the ui are the b-periods of  the Cauchy integral, go is a 

normalization constant, and the path of  integration between Po and P has to be the same 

for all integrals. 

Proof (sketch). It can be easily seen that ~ ( P )  is a single-valued function on EH: the 

difference of two paths of integration between P0 and P can be represented as a linear 

combination of the a-and b-cuts since they are a basis of the homology. Therefore, by a 
change of the integration path, the theta quotient will be multiplied by exp ( -  (N, b + u)) 

but this term is just compensated by the integrals in the exponent. The analytic properties 
of g follow from the definition of the Abelian differentials and the properties of the theta 

function. [] 

The underlying axiomatics ensures that the function f = X (cx~ +) given by 

+ u + b) 

s=  + u + b) 

/ 's / x exp X 2 ( ~ x ~ + ) - £ 2 ( e ~ - ) + ) , ~  l n G ( r ) d o ) ~ + ~ - ( r )  (4) 

F 

is a regular solution to the Ernst equation if P0 is subject to the conditions of Theorem 1 
and tO[~ ](to(c~) + u + b) ¢ 0. 

This class contains for constant G the finite gap solutions of [7-9]. There, the so-called 

Baker-Akhiezer function (a function with essential singularities and poles) was constructed 

for the Ernst equation. This function plays the central role for the nonlinear evolution 
equations for which initial value problems are posed (see [ 12]). 

However, we recall that in the case of the Ernst equation, one is confronted with boundary 
value problems. As already mentioned above, Neugebauer and Meinel were able to trans- 

form the boundary value problem for the rigidly rotating disk of dust to a matrix Riemann- 
Hilbert problem on the Riemann sphere S 2 and subsequently to a scalar Riemann-Hilbert 

problem on a hyperelliptic surface of genus 2 with branch points E1 = x/(i -- #d)//zd, 

E2 = -F1  and Fi = El. This solution just falls in the class above, where the contour F 
is the covering of the imaginary axis between - ip0 ,  ip0 in the +-sheet,  the characteristic 
reads 

o 1 
2 1 ' 

and G is given by 

G = 1 + #2(1 + X2) 2 + #d(1 + X 2) 

(dimensionless coordinates ( / (0 ,  ~/se0 are used). 
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It was observed in [13] that this solution is part of  a large class which can be obtained 

by prescribing one of the periods of the integrals in the exponent of  (4) on /~H without 

real branch points as an arbitrary solution of the (axisymmetric) Laplace equation. Then 
the other periods as well as these integrals can be calculated from the so-called Picard- 
Fuchs equations together with some boundary conditions. The integrability condition of 

this Picard-Fuchs system is just the Laplace equation which implies that all periods are 
necessarily solutions of  the Laplace equation. Later this class was extended in [14] to the 

case of  real branch points. Since any solution to the Laplace equation can be written as 

periods of  an (possibly infinite) linear combination of Abelian integrals of  the second kind 

and a Cauchy integral over some contour F ,  the class given in [14] is equivalent to (4) 
in this sense. Therefore the results of [13,14] can be related to a well-posed mathematical 

problem, a Riemann-Hilbert  problem on a hyperetliptic Riemann surface. 
The main aim of the present paper is however to clarify if exterior solutions for isolated 

relativistic bodies can be identified within this class. Since the vacuum solutions considered 
in this context will be singular at the boundary of the matter region, one has to identify the 

singularities of  the Ernst potential (4) with this boundary which will be a contour in the 

(p, ff)-plane. The advantage of the approach used here is that the possible singularities of  

f can be easily identified. These are exactly the points where the conditions of Theorem 1 
do not hold: the axis p = 0 (this is a reminescent of the fact that the axisymmetric Laplace 

operator entering the Ernst equation is singular there), the branch points Ei and F~, the 
singularities of  the Abelian integrals in the exponent of (3), and a diverging normalization 

constant X0. The latter simply leads to a pole of  the Ernst potential. For the remaining points, 

we have the following theorem. 

T h e o r e m  2. Let f be the Ernst potential represented in the form (4). Then we have: 
(1) f has essential singularities at the points where Po coincides with the singularities of 

the Abelian integrals of the second kind in S2. 
(2) The Ernst potential may have singularities where Po coincides with the end points ~)[" 

the contour F. f is bounded if Po approaches the contour F at the remaining points. 
Its limiting value will depend on the side from which the contour is approached. 

(3) Let Z' be the Riemann surface given by/z '2 = ~Ig_l (r - E i ) ( r  - Fi ). A prime denotes 
that the primed quantity is taken on this surface. Let 

(0' [3' (og'l~x~ + + u' + b') 

+ ( - l )  + + bD)O'  ± + u' + b') # 0 

(5) 

on the axis where the theta characteristic [~ ] is written as 

I e~' 1 1 with =0 ,1 .  

J 
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Then the Ernst potential is regular on the axis besides at the singularities of $2, points 

of F, and branch points Ei, Fi. 
Cl t 

(4) For O'[t~,](u '  + b t) 5~ O, the asymptotic behavior of f for large p2 + ~2 is given by 

f = 1 - m/v/--~+ ~2 where m is a complex constant. 
(5) f is bounded but in general not differentiable if Po coincides with real branch points 

Ei or El. 
g-1 

(6) Let E" be the Riemann surface given by #t,2 = H i =  1 (1- - Ei ) (l" - F i ). A double prime 
denotes that the corresponding quantity is taken on this surface. Let El, Fi q~ F be 
nonreal branch points. For g = 1, f is regular at points where PO coincides with El 

or FI. l f  g > 2 then f is regular at points where Po coincides with Ei or Fi if and only 
if the following holds: 

L~tt]  + ~1 l:r/'g -1 + ~127rg) 

+2El l  exp{--(Yg-i + f:12~(g-l)g + 2zriE21)} 

× o,, r utt l (yt, 
L f l t ' J  -- El lT i 'g - I  + ~12~g) 

+ 2E12 exp{--(yg + EII:R'(g_I)g q- 27riQ2)} 

x m,  Limits j .--I- E l l g g - 1  - ElZ.Trg) 

+ 4El 1~12 exp{--(yg_ 1 + Yg + 2zri(E21 + E22))} 

x 0 , ,  F°tt'1 (yt, k ttj - EIIYFg-I -- 6127rg)' (6) 

where y = u + b i o)( oc +) and the theta characteristic [~]  is written as 

O t t t  Ell ~512 ] 
f l i t  ° 

E21 f22 J 

Proof(sketch). 

(1) Follows from the definition of the Abelian integrals. 

(2) Follows from the fact that P0 is a branch point of/2H. Consequently, the sign of the 
root one has to choose in the evaluation of the contour integrals depends on how P0 
approaches the contour. 

(3) The Ernst potential is best evaluated on the axis in a cut system where the cut ag 
encircles [Po, P0] and where all b-cuts start at the cut [El,  FI]. Then it is a standard 
result of  Fay [ 15] that in the limit p ~ 0 the differential of  the first kind do)g becomes 

¢ 
the differential of  the third kind d~o~_~+ on Z '  plus an expansion in powers of  p that 
contains Abelian integrals of  the second kind on E t. The theta function on L:H thus 
breaks down to the sum of two theta functions on Z t that does not vanish if (5) holds. 
This proves the statement. 

(4) The asymptotic behavior of ,f can be directly calculated from the axis potential. 



(5) 

(6) 
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Using the cut system of (3) and putting Po = Eg + x with x = 3e i4~ where 3 E R +, 

~b E R, one recognizes that the expansion of f in the vicinity of  the real branch points 

contains powers of  v/x and x/Y with in general q~-dependent coefficients. Only the 
limiting value Pc --+ Eg exists. 

Without loss of generality we may restrict ourselves to Eg. For the other branch points, 

the considerations are similar. The investigation resembles the one on the axis: choose 

a cut system where ag encircles [P0, Fg] and ag_ l the cut [P0, Eg]. Then dw~, re- 

spectively, dwg_ ~ become differentials of  the third kind on ~2" with poles at F +. F~,, 

respectively, at E +, Eg .  The evaluation of  f is as on the axis and the limiting value 

exists if (6) holds. If Eg E F ,  then ug or its derivatives will diverge for P0 = E~. D 

The results from above can be given an obvious physical interpretation: the essential 

singularities of f correspond to line singularities of the metric function U, the real branch 

points to topological defects on the axis. It is doubtful that they have any physical application. 

In contrast, the contour F= given by P0 6 F can be related to the surface of  an isolated body 
69~r~'1, since the Ernst potential is only discontinuous there. The requirement ~ [~, j tu + b') # 0 

is independent of  the physical coordinates and can only be violated ifa uniquely determined 

relation between the contour integrals and the Riemann surface holds. If the branch points 

Ei and Fi and the jump function G( r )  depend upon a single parameter, there will be a whole 

range of  this parameter for which this condition holds. A similar discussion is possible for 

the conditions appearing in (3) and (6). 

From Theorem 2, one distinguishes a physically interesting class of solutions as follows. 

Corollary 3. Let the branch points El, Fi (i = 1 . . . . .  g) ~f £H be nonreal, go be Jinite. 

and U be a smooth, closed contour on EH such that (5) and (6) are fulfilled. Then f is a 

regular solution of  the Ernst equation ever3~where outside F-. 

This suggests together with the fact that the solution for the rigidly rotating dust disk 

belongs to this class that further physically interesting solutions can be identified there, 

and stresses the importance of  Riemann-Hilbert techniques in the context of  solutions to 

botmdary value problems for the Ernst equation. 

Discussions with Prof. G. Neugebauer and R. Meinel are gratefully acknowledged. The 

project was supported in part by the DFG (Ne 459/5- l). 
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